
Barracuda Embedded Web-Server
whitepapers

Please note that the PDF version is for printing a hardcopy. Please see the online
whitepapers for the interactive examples.

Introduction to the Barracuda Embedded Web-Server... 3
Introduction to HTTP.. 3
Using a Web Server in an embedded device .. 4
Using a Web Server for regression tests ... 5
Using a browser to control an embedded device .. 5
Introduction to CSP... 6
Creating dynamic user interfaces using CSP. ... 8
Sending data from a browser to the server.. 12
"Hacking" a Web Server using telnet ... 14
Rich Client Interface ... 15
The EventHandler ... 17
Conclusion .. 17
References... 17
Device control with Barracuda ... 18

Use Barracuda to remotely set and get the system time ... 18
Assembling the web-server... 19
The Barracuda SMX task.. 19
Creating the set/get time page class .. 22
Dynamically create the web-interface .. 23
Setting a new time in the device ... 25
Conclusion .. 26

The CSP Hangman game... 28
Designing the hangman framework.. 29
Designing the C code infrastructure ... 31
Writing the C code .. 32
Replacing the HTML comments with CSP tags ... 34
Creating the form and maintaining the state variables.. 36
How it works... 37
Conclusion .. 38
Exercise... 38

Introduction to web-security and the Barracuda Virtual File System ... 39
Preventing eavesdropping and modification of data... 39

Authenticating users.. 40
Authorizing users .. 41
The virtual file system .. 43
The Barracuda security manager .. 45
Conclusion .. 46

A Trace Tool Using the EventHandler... 47
Designing Rich Client User Interfaces ... 48
Writing and testing the initial code without using Barracuda....................................... 49
Creating the interface definition file (IDL)... 50
Adding the client side EventHandler code.. 50
ANSI C and object-oriented programming... 51
Downloading the example code.. 51
The server side implementation of the Simple Debugger... 52
Conclusion .. 53

Introduction to the Barracuda Embedded Web-Server
This paper covers fundamental concepts of HTTP and how the Barracuda Embedded Web
Server can be used in an embedded device.

Depending on your knowledge of the various technologies covered, it may not be necessary to
read each section, although each section also presents some of Barracuda's unique features.
This paper also assumes a basic understanding of HTML, C and C++.

This article is a PDF version of our online whitepaper at:

http://barracudaserver.com/WP/intro/

Introduction to HTTP
The Hyper Text Transfer Protocol(HTTP) is a text-based Remote
Procedure Call (RPC) protocol that can transfer any type of data
between the client and server. An HTTP client opens a connection
and sends a request message to an HTTP server. The server then
returns a response message.

The HTTP header contains an initial line and a number of header
lines followed by an optional body. The initial line of the request
and the response are different. In a request, the initial line contains
the HTTP method and the requested resource, while in a response,
it contains the response protocol version, a status code, and a
status message. The most common HTTP methods, the RPC type,
are GET and POST, where GET usually means "Server, please give
me this resource" and POST usually means "Server, here is my
data", though this should be decided by the resource.

A good Web Server
should treat the
requested resource as
an executing unit and
let the executing unit
decide what to do with
the request command.
A good web-server
should also allow the
resource to announce
the HTTP methods
supported by the
resource when upon a
client request.

Example HTTP command, setting the refrigerator and freezer temp:

POST https://embeddedwebserver.net/refrigerator/temperature/ HTTP/1.1
User-Agent: I-typed-this-connecting-a-telnet-client-to-the-server
Content-Type: application/x-www-form-urlencoded
Content-Length: 28

fridgeTemp=5&freezerTemp=-30

http://barracudaserver.com/WP/intro/

The Barracuda embedded Web Server treats all resources as
executing units. A Barracuda executing unit can be a physical
resource such as a page. A virtual resource can also be a container
that can contain other executing units. An executing unit is just a
plugin to the web-server. The Barracuda embedded web-server
comes with a number of executing units such as a directory unit
that can directly read from a ZIP file and present the content to a
browser client. Other plugins, such as the EventHandler, can be
installed as well. The above HTTP command example sends two
parameters, fridgeTemp and freezerTemp to an executing unit in
the Barracuda Virtual File System at location
"/refrigerator/temperature/". A Directory Executing Unit is called
HttpDir and a Page Executing Unit is called HttpPage. An HttpPage
and HttpDir can be extended, or in Java terminology, you can
extend the base classes and implement your own "live resource".

The Barracuda Web
Network Management
plugin, WNMP, would
have been impossible
to design without the
Barracuda Directory
Executing Unit. The
Barracuda Web Server
platform with its
support for Executing
Resources makes it
easy to design
advanced plugins.

Using a Web Server in an embedded device
A Web Server in one device is typically used for remote management of one or more devices.
A client does not necessarily have to be a browser. Any client implementing the HTTP protocol
stack can be used to control the device. The HTTP protocol is good for sending anything to the
device, from control data to exchanging user data, and even uploading new software releases.
A client HTTP library can be linked into a C or C++ client application or a scripting with native
HTTP support, such as Python, can be used.

There are many reasons for using HTTP as a general protocol between a client and a server,
the device. An application using the HTTP protocol benefits from services provided by HTTP
such as:

• authentication and authorization support
• Encryption by using SSL
• Bypass firewall restrictions

A resource is addressed by its URL, or the path element of the URL. For example, we used the
path "refrigerator/temperature/" above to address the temperature object in the server. One
can think of a resource as an object with a number of methods. The methods can be the
standard HTTP methods such as GET, POST, PUT etc, but HTTP is very flexible and you have
no such constraints when designing a Barracuda executing unit. You are free to interpret the
HTTP methods to anything you like as long as your client and server understand the data
being exchanged.

Using a Web Server for regression tests
The HTTP protocol is becoming increasingly popular for exchanging data. You can even find
Open Source HTTP client libraries that can be link with C or C++ host applications. Most
scripting languages also come with native HTTP support. Python is one such scripting
language. During development, internal objects and methods in your embedded system can
be exposed using a Barracuda Executing Unit. Each Executing Unit is installed as a resource in
the Barracuda Virtual File system, thus each object you want to expose can have its own URL.

A scripting language such as python simplifies writing advanced regression tests. Data sent to
the server can be encoded as "application/x-www-form-urlencoded" data as shown above. URL
encoded data, is so common in HTTP that the Barracuda Web Server automatically decodes all
of the data in the URL encoded stream. URL encoded data in HTTP is much like the parameters
passed to a C function.

However, exchanging complex data structures is difficult with URL-encoded data, so for these
some serialization layer must be used. Fortunately, there are platform and language
independent standards availbale that do this. SOAP is one method used to serialize an object
into XML. Barracuda supports a lighter and more common XML protocol called XML-RPC.

Many scripting languages natively support XML-RPC. Python, for example, can utilize any
object in the embedded device exposed as an XML-RPC object from a script running on a host
computer. Another common regression test environment is Expect, based on TCL, which also
has support for XML-RPC.

Using a browser to control an embedded device
Most people associate a Web Server as a way of serving HTML content to a browser. An
advanced Web Server such as Barracuda can do much more than serving HTML files. We
briefly discussed above how one can use Barracuda as a general purpose HTTP stack and how
one can do regression tests by exporting internal objects in a device to script programs
running on a host computer.

A naive Web Server treats resources as files and either has no support for dynamically
generated content or forces the Web-Designer to use certain predefined directories for
generating dynamic content. For example, a server supporting CGI forces the web-designer to
use the /cgi/ directory for dynamic content generation and data exchange.

Barracuda supports Executing Units, thus a resource is a "live resource" i.e. it is a mini
program one can plug into the server. In Barracuda, a resource is typically derived from the
HttpPage type. A more complex design can use the HttpDir type to design a collection of
virtual resources. A Barracuda resource can dynamically generate anything from binary data
such as streaming audio to plain text. A resource is typically generating HTML when the client
is a browser.

A typical scenario when using a browser to control a device is for the browser to initially
request a certain resource in the server. The resource might respond by sending back an
HTML page containing information about that particular resource when receiving an HTTP GET
command. For example, a resource at "refrigerator/temperature/" sends back information
about the current temperature in the refrigerator and freezer. The HTML sent to the browser
can for example contain an HTML form, which the user can use for setting a new temperature
in the device.

HTML form example The HTML form source code

<form method="post">
 <table>
 <tr>
 <td>Refrigerator Temperature:</td>
 <td><input type="text" name="fridgeTemp" value="5"/></td>
 </tr>
 <tr>
 <td>Freezer Temperature:</td>
 <td><input type="text" name="freezerTemp" value="-30"/></td>
 </tr>
 <tr>
 <td colspan="2">
 <input type="Submit" value="Set temperature"/>
 </td>
 </tr>
 </table>
</form>

If the user wants to change the temperature, the user can use the
form displayed in the browser to change the values and then press
the submit button. When the user presses the submit button, the
browser collects the data in the form and sends it as URL-encoded
data to the server. The Barracuda server decodes the URL-encoded
data and starts the resource specified in the POST command. In
Barracuda, this will typically be the same resource as the resource
that produced the initial HTML page. A naive web-server forces the
web-developer to POST the data to a predefined fixed URL, for
example, a CGI Web Server forces the web-developer to POST data
to the "cgi/" directory.

GET tells the
resource to
dynamically create
HTML and return it
to the browser.

POST tells the
resource that the
user wants to set
new data.

Introduction to CSP
A Barracuda resource is typically derived from the HttpPage type. When the user requests a
resource, the Barracuda Web Server locates the resource and delegates the request to the
resource. A resource gets two objects from the server, a request object and a response object.
The request object contains information about the client and any data sent from the client.
The response object is used when dynamically creating the response data, such as an HTML
response.

The following shows a code fragment from a resource object serving a HTTP GET
request.

response->write("<html>");
response->write(" <body>");
response->write(" <p>Greetings</p>");
response->write(" </body>");
response->write("</html>");

As you can see from the above fragment, the resource object creates a simple HTML page
containing a greeting message.

Most Web-Developers want to separate content from logic. The above HttpPage resource code
example shows a tight integration of code and HTML content. Maintaining such a resource is
difficult and time consuming. The HttpPage resource makes it possible to do advanced HTTP
communication. A way of separating logic and content, while giving developers the flexibility of
the services provided by a HttpPage resource is needed.

The Barracuda platform solves this problem by providing a special TAG compiler that takes an
HTML file and translates the file to an HttpPage. The TAG language is called CSP. CSP, short
for C Server Pages, is a modern reimplementation of the CGI standard. CSP extends HTML
with new tags that are only visible on the server side.

The following shows a very simple CSP page.

<html>
 <body>
 <p>Greetings</p>
 </body>
</html>

The above example shows that a CSP page looks like a regular HTML file. This page contains
no special CSP tags and behaves like static HTML file.

CSP also makes it easy to create dynamic pages. A dynamic page is a resource that creates
content either from user input or from some information in the device.

Let us now change the above simple CSP page to the following:

<html>
 <body>
 <p><%="Greetings"%></p>
 </body>
</html>

CSP tags start with <% and end with %>. The <%= tag tells the CSP runtime to take the
following string and send it to the client that requested the resource -- i.e. to the browser.

We have now added a CSP tag to the page, but the result produced is identical to our first CSP
page. The string "Greetings" is constant and will never change.

Continuing with our CSP example page:

<html>
 <body>
 <p>Greetings user of <%=request->getHeaderValue("User-Agent")%></P>
 </body>
</html>

Now we added some C++ code directly into the HTML page. The method getHeaderValue in
the request object returns the value for the "User-Agent" HTTP request header value. The
Barracuda server decodes all the header values and keeps them in an internal table, thus
getHeaderValue("User-Agent") returns the identity of the client doing the request.

Barracuda is a C library written in ANSI C compatible code, but provides both a C++ and a C
interface. The above C++ code can be written as the following C code

<%=HttpRequest_getHeaderValue(request,"User-Agent")%>

The Barracuda framework provides a rich API to the developer. A CSP resource can use all of
the C or C++ methods provided by this API. A CSP resource has two implicit objects available
when executing: the request and response object. The request object provides information
sent from the client to the server, while the response object is used when sending data back
to the client. The response object is implicitly used in the above code by the <%= tag.

Creating dynamic user interfaces using CSP.
The first phase of developing a CSP application is creating the HTML interface, and is usually
handled by a professional web interface developer. The second phase involves a C
programmer or web developer with a small amount of C experience to add the CSP tags to the
HTML code.

The final step is testing the new interface in the Barracuda Embedded Web Server. This can be
an iterative process, and will show places where adjustments should be made to the HTML or
other interface components. HTML editors such as Dreamweaver will not corrupt or remove
the CSP tags with the C/C++ code.

The following examples are simple so that they can easily be understood. In most web
applications, the HTML would be much more extensive, and would also likely involve CSS.

First, we'll add an interface to display the temperature reported by a new controller unit on
our refrigerator.

<html>
 <body>
 <h1>My refrigerator</h1>
 <table>
 <tr>
 <td>Refrigerator Temperature:</td>
 <td><%="%d" rand()%10 %></td>
 </tr>
 <tr>
 <td>Freezer Temperature:</td>
 <td><%="%d" - rand()%35 %></td>
 </tr>
 </table>
 </body>
</html>

The <%= tag by default assumes that the data is a string. All other types must be explicitly
declared. The <%= tag accepts the same format flags as printf, so <%="%d" means "print an
integer value". The above code uses the ANSI C function rand to generate a random
temperature value. A real implementation would call a function that returns the actual
temperature. The modulus operator is used such that we get a refrigerator temperature

between 0 and 10 degrees Celsius, and a freezer temperature between 0 and -35 degrees
Celsius.

Most of the content in this example page is static. This is typical when working with CSP. The
HTML framework is always the same, but the temperature data is dynamically presented to
the user.

An improvement to this, which just prints out the temperature of the freezer and refrigerator
in an HTML table, would be to present the temperature graphically as a bar chart.

There are a number of ways to create a
bar chart using HTML. This example will
dynamically create a HTML table
containing small images.

The figure to the right shows a bar chart
representation of a freezer temperature of
-25 degrees Celsius and a refrigerator
temperature of 4 degrees Celsius:

The colors blue, green, yellow, orange and red are used. Also, a transparent image is used
when hiding the temperature element. The above freezer bar contains 5 transparent images
for the temperature -20, -15, -5 and 0.

To keep the example as simple as possible, the refrigerator temperature is not included in our
CSP example. The table in the CSP code below contains three table row elements (<tr>). The
first row contains a table data element, which spans across 8 elements, the second row
contains the temperatures, and the last table row contains the images. The getFreezerImg
function returns the string for the current image to insert into the table element.

Refrigerator CSP code:

<html>
 <body>
 <h1>My refrigerator</h1>
 <table>
 <tr>
 <td colspan="8">Freezer temperature</td>
 </tr>
 <tr>
 <% /* print out the temperatures -35, -30 etc in the first table row */
 for(i = -35 ; i <= 0; i+=5)
 response->printf("<td>%d</td>", i);
 %>
 </tr>
 <tr>
 <% /* Print out the images in the second table row */
 for(i = -35 ; i <= 0; i+=5)
 response->printf("<td></td>",
 getFreezerImg(freezerTemp, i));
 %>
 </tr>
 </table>
 </body>
</html>
<%p
 int i;
 int freezerTemp = - rand()%35;
%>
<%g
#include <stdib.h>
const char* getFreezerImg(int freezerTemp, int i)
{
 if(freezerTemp < i)
 return "transparent";
 switch(i)
 {
 case -35: return "blue";

 case -30:
 case -25: return "green";

 case -20:
 case -15: return "yellow";

 case -10:
 case -5: return "orange";

 case 0: return "red";

 }
 assert(0); /* Should not get here */
 return "";
}
%>

The above CSP example demonstrated several new tags.

The <%g tag means global. Anything declared here goes outside of the generated HttpPage.
The getFreezerImg function is inserted into the global area by the CSP compiler.

The <%p is the prolog tag. Anything declared here is inserted at the beginning of the
HttpPage service function. The <%p is a special form of a code fragment tag.

The <% is a code fragment tag. Anything in a code fragment tag is executed when the
HttpPage service function runs. For example, the following code fragment tag from the
example above prints out table data elements containing the images.

<%
 for(i = -35 ; i <= 0; i+=5)
 response->printf("<td></td>",
 getFreezerImg(freezerTemp, i));
%>

The following will be printed out by the above code fragment if the freezer temperature is -25
degrees:

<td><td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>

We use the printf function in the response object to print out the table data elements. Another
possibility is shown below.

<% //Begin loop
 for(i = -35 ; i <= 0; i+=5) {
%>
 <td><img src="<%=getFreezerImg(freezerTemp, i)%>.gif"/></td>
<%
 } //End loop
%>

This produces the same output as the original code fragment.

Sending data from a browser to the server
A client application does not necessarily have to be a web-browser. When a browser sends
data to a server, the content type of the data normally is "application/x-www-form-
urlencoded". Browsers don't normally send other content types without executing JavaScript
code.

URL-encoded data is sent as key/value pairs as "key1=value1&key2=value2&key3=value3".

Some characters must also be "quoted" to prevent them from being handled as control
characters. This "quoting" is transparent to the CSP designer when using the Barracuda
framework.

Sending data from a browser to the server normally works like this:

• The browser sends a GET request to a resource in the web-server.
• The web-server delegates the request to the resource.
• The resource responds by sending an HTML page containing one or a number of HTML

forms to the client.
• The user fills in the form and submits the form to the web-server.
• The browser collects the form data and sends the information as URL-encoded data to

the resource.
• The web-server delegates the request to the resource, and this time the resource

detects that this is a POST command. The resource fetches the pre-parsed URL-
encoded data from the request object by using methods in the request object.

The following code will make the refrigerator resource also able to change the temperature
settings.

<html>
 <body>
 <h1>My refrigerator</h1>
 <form method="post">
 <table>
 <tr>
 <td>Refrigerator Temperature:</td>
 <td><input type="text" name="fridgeTemp" value="<%="%d" fridgeTemp%>"/></td>
 </tr>
 <tr>
 <td>Freezer Temperature:</td>
 <td><input type="text" name="freezerTemp" value="<%="%d" freezerTemp%>"/></td>
 </tr>
 <tr>
 <td colspan="2"><input type="Submit" value="Set temperature"/></td>
 </tr>
 </table>
 </form>
 </body>
</html>
<%!
 // Declare two variables in the HttpPage object
 int fridgeTemp;
 int freezerTemp;
%>
<%!!
 // Initialize the two variables at system startup.
 fridgeTemp = 5; // Default refrigerator temp
 freezerTemp = -30; // Default freezer temp
%>
<%p
 if(request->getMethodType() == HttpMethod_Post)
 { // The following code is executed if the user press the submit button
 int newFridgeTemp = (int)U32_atoi(request->getParameter("fridgeTemp"));
 int newFreezerTemp = (int)U32_atoi(request->getParameter("freezerTemp"));
 // Are the new values within the tolerated limits.
 if(newFridgeTemp < 1 || newFridgeTemp > 7 ||
 newFreezerTemp < -35 || newFreezerTemp > -18)
 { /* No, the user obviously does not know enough about food
 safety. Send user to a page that can educate the user
 on food safety.
 */
 response->sendRedirect(/* Send HTTP code 302 to browser */
 "http://lancaster.unl.edu/food/ciqxx.htm");
 return; // Abort
 }
 //Set the new temperature
 fridgeTemp = newFridgeTemp;
 freezerTemp = newFreezerTemp;
 }
%>

If you look at the HTML section, you will see that we have now added a HTML form element to
the page. The original table data elements printing out the temperature are now changed to a
table data element containing a HTML form input type.

<td><input type="text" name="fridgeTemp" value="<%="%d" fridgeTemp%>"/></td>

The default value for fridgeTemp is 5 degrees, so what is initially sent to the browser is:

<td><input type="text" name="fridgeTemp" value="5"/></td>

When the user clicks the submit button, the browser sends the data to the web-server. The
initial HTTP POST command in the HTTP section above shows what this form data looks like
during transmission. The URL-encoded data "fridgeTemp=5&freezerTemp=-30" corresponds to
the two field names in the CSP example.

The CSP code extracts the fridgeTemp and freezerTemp in the prolog section, i.e., the tag
starting with <%p.

request->getParameter("fridgeTemp")
request->getParameter("freezerTemp")

The code example above uses the keys "fridgeTemp" and "freezerTemp" in order to fetch the
value part of the data.

The server will perform a sanity check on the data. This is an important step and is typically
where web applications fail. If the sanity check fails, the user is forwarded to a page
explaining food safety. This is something we added for fun. A web application would normally
respond with an error page.

Another implicit sanity check is performed by the U32_atoi function. The U32 is an unsigned
32 bit type in the Barracuda web-server. The U32_atoi function works like the standard atoi
function, but it also can tolerate a NULL string without crashing. Even though the U32 function
returns an unsigned integer, the function can decode and negate negative numbers.

//The following returns NULL if "fridgeTemp" is not in the URL-encoded data.
request->getParameter("fridgeTemp")

Hackers are constantly trying to penetrate and crash web servers by using a number of
methods, and they aren't connecting to web servers with browsers for these attacks. They
won't always be sending proper form data, so the server must check that all required fields
are present.

"Hacking" a Web Server using telnet
As a simple example, open a command window (DOS window). In windows 2000 and XP a
command window can be started by pressing the start button and thereafter selecting run.
Type cmd in the pop-up window and press return. Copy the text below by marking it and press
control-C.

telnet embeddedwebserver.net 80
POST /refrigerator/temperature/ Http/1.0
User-Agent: I-typed-this-connecting-a-telnet-client-to-the-server
Content-Type: application/x-www-form-urlencoded
Content-Length: 28

fridgeTemp=2&freezerTemp=-25

Now paste the text into the DOS window. Text can be pasted into a DOS window by pressing
the top left icon in the DOS window, the small "C:\" icon. Scroll down to edit and select paste.
The resource should respond with a message telling you that you successfully set the
refrigerator temperature to 2 degrees and the freezer temperature to -25 degrees Celsius. You
can also download two DOS batch files, which automatically run the telnet commands.

Now do the same thing, but without the URL-encoded data.

telnet embeddedwebserver.net 80
POST /refrigerator/temperature/ Http/1.0
User-Agent: I-typed-this-connecting-a-telnet-client-to-the-server
Content-Type: application/x-www-form-urlencoded
Content-Length: 0

Copy the above text and paste it into the same DOS window, and observe the different
response message.

The path in the HTTP POST example requests a directory since the path ends with "/". The
web server automatically adds "index.html" to the end of all directory requests. If you change
the path to "/refrigerator/temperature/index.html" in the above examples, the results will be
the same.

Barracuda supports request delegation, which is typically used in Model View Controller
design. We use request delegation to construct a simple filter in index.html. The actual
temperature resource is in "ex4.html". The index.html CSP resource is just a filter that
validates a POST request and responds by sending a different message to the client if the
Content-Length is 0.

The index.html resource delegates (forwards) the request to the ex4.html resource if the
Content-Length is valid. This can be seen by changing the path in the first (the valid) telnet
example above from "/refrigerator/temperature/" to "/refrigerator/temperature/ex4.html". You
should get the same response message from the server.

Rich Client Interface
There are a lot of buzzwords on the internet these days about Rich Client applications, like
"Rich Client Interface", "DHTML client", "Web Services", "Ajax", etc. A Rich Client application
uses the browser as an environment to create a fully interactive graphical user interface rich
and interactive user interface, and lies between a standard lightweight HTML form and a full
native client-side OS-based application. A Rich Client can also be a standard Windows
application that communicates with the server using HTTP, althoug such an application must
be installed on the host computer before interacting with the server.

http://barracudaserver.com/WP/intro/telnet.zip

Modern browsers natively support a programming language called JavaScript. They also have
a standard API, the Document Object Model, that JavaScript code can use for creating the user
interface. This API allows the JavaScript code to create interactive GUI applications that
resemble native applications. This basically means that you can design Dynamic Web-
Applications using DHTML without the need of refreshing or reloading pages when you send
data to the server.

A DHTML client communicates with the server using an object called XMLHttpRequest which,
despite the name, has nothing to do with XML. The XMLHttpRequest allows JavaScript code to
send any type of HTTP request to the server.

Below we have created a Rich Client Interface for the simple fridge controller we discussed
above.

The popular "Web Services" is basically a method of serializing and de-serializing objects over
HTTP. Barracuda supports XML-RPC Web Services, even a standard Web Services client can be
used when communicating with Barracuda. Typically, Web Services won't be used in a DHTML
client when URL encoded data is sufficient. The original resource already accepts URL encoded
data which is much easier to manage for most applications.

The resource "/refrigerator/temperature/ex4.html" is designed to accept URL encoded data.
Our original resource wasn't configured to handle Web Services requests, so a new
temperature object should be constructed specifically for Web-Services.

The response from the XMLHttpRequest object is sent asynchronously to a JavaScript callback
function. The original service function responds by sending a HTML page to the client. A
DHTML client could potentially parse the HTML to get the new temperature settings, but this
requires a lot of work. A better solution is to tell the server resource that the client accepts
JavaScript code as a response message by setting the correct "Accept" header in the request.

xmlhttp.setRequestHeader('Accept', 'JavaScript');

The server resource can simply check for this header.

if(strcmp("JavaScript", request->getHeaderValue("Accept")) == 0)
 Send JavaScript object
else
 Send HTML page

If the client sent the header, then a JavaScript object is sent as response message.

Ajax is an example of this, and can be found by searching on the internet. You can also take a
look at Google Suggest, which is using an XMLHttpRequest object in the background as you
type your search string.

The EventHandler
The above examples show how to design basic user interfaces using CSP technology and Rich
Client Interfaces that can communicate with the server without refreshing the page.

Both the server generated CSP interface and the Rich Client interface must explicitly
ask the server for a new temperature reading. A CSP-generated page could be sent to
the browser that automatically refreshes the page after a number of seconds, and the Rich
Client interface can have a JavaScript timer periodically call the XMLHttpRequest.
Polling the server for data adds overhead to the network
traffic, and can even make the client interface behave
strangely. It would be better if the server could inform the
client asynchronously of changes to the temperatures
without waiting for the client to ask again.

The Barracuda EventHandler plugin makes this possible as
described in our EventHandler White Paper. This White
Paper shows Rich Client Interface designs that aren't
possible to implement using traditional RPC mechanisms.

The Barracuda EventHandler
plugin gives Web developers
the ability to add server-based
notification functions and two-
way, real-time data exchange
to browser interfaces. This
improves the functionality of a
wide range of Web
applications, and makes them
useful for functions like alarm
handling and live monitoring
of devices.

Conclusion
We have covered a lot of ground in this paper, but we have barely scratched the surface of the
endless possibilities with the Barracuda platform. The following White Papers are for users
interested in a deeper understanding of the Barracuda platform:

• Asynch trace tool shows how the EventHandler can be used to construct an embedded
device trace tool by having a printf like function output its data asynchronously to a
browser window.

• Device Control demonstrates how to design a resource without using the CSP
compiler.

• Hangman implements the classic Hangman Game using CSP.
• Web security. A device that is constantly connected to the internet needs to be

protected from unauthorized use. This paper gives an introduction to the security
mechanisms in Barracuda.

References
• Http Made really Easy
• Introduction to XMLHttpRequest
• Asynchronous JavaScript + XML = Ajax
• Google Suggest = example Ajax application
• Representational State Transfer (REST)

http://barracudaserver.com/WP/EventHandler/
http://barracudaserver.com/WP/DeviceControl/
http://barracudaserver.com/WP/CSP/
http://barracudaserver.com/WP/security/
http://www.jmarshall.com/easy/http/
http://jibbering.com/2002/4/httprequest.html
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.google.com/webhp?complete=1&hl=en
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

 Device control with Barracuda
Barracuda, which is an object oriented C library, provides a C code API and a C++
code API. We have two versions of this white paper, one for C programmers and one
for C++ programmers. This article assumes that you are a C++ programmer with
some HTML knowledge. It is suggested that you read the introduction to Barracuda
prior to reading this article.

The Barracuda Web-Server comes with a number of sophisticated tools that can automate
much of the work in creating web-pages for device control. We have in this article purposely
not used any of these tools in order to show you the foundation of the web-server and to keep
the article as short as possible.

Use Barracuda to remotely set and get the system time

This article will demonstrate how one can use Barracuda to remotely control a device. The
Barracuda Embedded Web-Server will be used to remotely set and get the system time in an
embedded device powered by the SMX real-time operating system. The Barracuda Web-
Server, which is a C library, is linked with the SMX real-time operating system and the set/get
system time code. Barracuda runs on many operating systems, but we have in this
paper used a few primitives from the SMX real-time operating system for setting and
getting time etc.

The objective of this article is to make a simple web-interface, which we can use to obtain the
current time in an embedded device or to change the time, if the time is incorrect.

The web-interface should have the following layout:

When the user makes the browser send a HTTP GET request to the web-server, the C++ code
we are going to design should get the current time from SMX, format the time into a human
readable string and send the string to the browser. A HTML form will also be created and sent
to the browser. The user can use this form for setting a new time in the embedded device.

The HTML form contains two input fields:

• A string input field, which is where the day and time is entered.
• A submit button, which sends the form as a POST request to the server.

The Hyper Text Transfer Protocol (HTTP) is the network protocol of the Web. It is a protocol
designed to transmit data from the client to the server and vice versa. The GET command sent
from a browser (the client) to the server is the most common HTTP method; it says "give me
this resource". This is the initial command sent to the server for getting the above web-
interface. The set/get time logic we will design will get this request and dynamically create the
above web-interface. Every time the user presses the refresh button, the browser sends a new
GET request to the server and a new HTML page is dynamically created with the correct time
formatted as a human readable string. You will therefore see the time change every time you

press the refresh button. A POST command is used to send data to the server. The browser
will automatically send a POST command when the user presses the "submit" button. The
browser extracts the user data entered in the HTML form and sends this data embedded inside
the POST command to the server. The set/get time logic will receive this data and set the new
date and time based on the data received from the browser.

Assembling the web-server

As aforementioned, Barracuda is a C library, which you link with your application and you
therefore have to write some support code in order to make a web-server. Barracuda is
designed to run in its own SMX task, where it uses the TCP/IP interface and waits for client
requests. When a client sends a command to the server, the server first parses the incoming
data and from this data, the server uses the extracted HTTP path to locate the object (the
page) that matches the path. When the object (the page) is located, the web-server sends an
event to the object and it is this object's responsibility to handle the request from the client
and to present the information requested by the client.

The Barracuda web-server uses a virtual file system. The path extracted from the client
request is used when searching the virtual file system for the object (the page) requested by
the user. If the object is found the web-server sends an event to this object, by calling a
registered callback function in this object.

The web-server we design in this article will only have one resource. The set/get time resource
is installed as "index.html" and the web-server knows that if a user requests a path to a
directory and that directory contains an index.html, the web-server will forward the request to
that page. The resource will be installed in the root directory thus by typing the IP address to
the device in a browser, the resource will be activated. For example, assuming that the device
has IP address 192.168.1.1, the URL http://192.168.1.1:8080 will activate our set/get time
resource. The 8080 is the port number to the web-server. You have to specify the port
number in the URL if the web-server is listening on a port different than the default HTTP port
80.

The Barracuda SMX task

Barracuda, which is run in a SMX task, must first be initialized. After the initialization, the task
enters an infinite loop which waits for incoming HTTP requests.

The Barracuda SMX task does the following:

1. Performs host platform initialization if run on Windows.
2. Creates the necessary Barracuda Web-Server objects and bind the objects together.
3. Checks if the initialization of the HTTP server listen object worked.
4. Creates the virtual file system and insert the set/get time resource into the virtual file

system.
5. Runs the web-server.

 116 void
 117 barracudaMain()
 118 {
1

 119 #ifdef WIN32
 120 WORD wVersionRequested;
 121 WSADATA wsaData;
 122 wVersionRequested = MAKEWORD(1, 1);
 123 if(WSAStartup(wVersionRequested, &wsaData))
 124 perror("WSAStartup");
 125 #endif
 126
 127 int port=8080;
 128
2

 129 //Create the socket dispatcher object.
 130 HttpDispatcher dispatcher;
 131 //Create the Web-Server
 132 HttpServer server(&dispatcher);
 133 //Create a server socket listener that listen on all interfaces.
 134 HttpServCon serverCon(&server, port);
 135
3

 136 if(!serverCon.isValid())
 137 { //A primitive error handling
 138 assert(0);
 139 return;
 140 }
 141
4

 142 HttpDir rootDir; //Root dir takes no parameters i.e. no name
 143 SetGetTimePage setGetTimePage;
 144 rootDir.insertPage(&setGetTimePage);
 145 server.insertRootDir(&rootDir);
 146
5

 147 #ifdef WIN32
 148 for(;;)
 149 {
 150 struct timeval t;
 151 t.tv_sec=0;
 152 t.tv_usec=0;
 153 dispatcher.run(&t);
 154 Thread::sleep(50); /* 50 msec. */
 155 }
 156 #else
 157 dispatcher.run();//Never returns
 158 #endif
 159 }

• Line 117 is the start of the Barracuda SMX web-server task. You must create and start
one instance of this task.

• Line 119 to 125 is used when you are running the web-server using the SMX windows
simulator. Barracuda is using Windows sockets when run on windows, and the
windows socket library must always be initialized as shown above.

• Line 127, the web-server port number is set to 8080 and not to the default HTTP port
80. This is useful when run on a host computer that might have another web-server
running on port 80. You can use any port number with Barracuda.

• Line 130 to 134 is where we assemble our minimal web-server. A Barracuda web-
server can be assembled in many different ways.

• Line 136 is where we check if the HttpServCon constructor was successful in opening a
TCP/IP listen object on port 8080. This might fail if another service is already using
this port number.

• Line 142 to 145 is where we design the minimal virtual file system and insert the
virtual file system into the web-server object. The HttpDir type is the base type for a
directory node in the virtual file system. We can use the base type directly, but it is
sometimes convenient to overload this base class and perform custom operations such
as filtering and logging of client requests.

• Line 143 is where we instantiate one instance of our set/get time resource. The
remaining part of this article will discuss how this class is designed.

• Line 157 is where we enter the web-server socket dispatcher loop when using
SMXNET. This function, which never returns, waits for incoming socket requests from
clients and dispatches the events to the web-server. When a user types in the URL
http://[IP address of device]:8080, the TCP/IP stack wakes up the barracuda task,
which starts processing the request. The path is extracted from the GET request,
which will be '/'. The web-server uses this path to locate our set/get time resource and
calls the resource's callback function.

• Line 148 to 154 is how we run the socket dispatcher when using windows sockets. The
SMX windows simulator is not compatible with a blocking call into the windows socket
API and therefore the web-server must run in "poll mode".

• Line 154 is where we make other SMX tasks run. The Thread class is a simple cross-
platform thread library that comes with Barracuda.

As you can see from the above code, Barracuda can also run on the SMX windows
simulator. The Barracuda C library and advanced host tools facilitate rapid
development using a Windows machine. You develop, run and test the code on

Windows before you even deploy the code into an embedded device -- obviously, a huge time
saver.

Creating the set/get time page class

A resource is an instance of the HttpPage class. The HttpPage class is in C++ terminology --
an abstract base class. This means that you cannot create an instance of this class without
first making a derived class. The set/get time class inherits from the HttpPage object and
implements the resource's service function. The service function is the callback function the
web-server calls when the web-server delegates the request.

The set/get time page class:

 9 class SetGetTimePage : public HttpPage
 10 {
 11 public:
 12 SetGetTimePage();
 13 private:
 14 static void service(HttpPage* o,
 15 HttpRequest* request,
 16 HttpResponse* response);
 17 void doPost(HttpRequest* request, HttpResponse* response);
 18 void doGet(HttpResponse* response);
 19 void setRTC(struct tm* tm);
 20 };

• Line 14 is the declaration of the service callback function. This is a C++ static function
and the first argument to the function is therefore a pointer to the object, the "this"
pointer in C++ terminology. You might wonder why we use a callback function and not
a C++ virtual function. The reason for this is that Barracuda is a C library and a virtual
function pointer is not compatible with C code.

• Line 17 to 19 declares some functions used internally by our SetGetTimePage. These
functions will be explained later.

SetGetTimePage constructor:

 22 SetGetTimePage::SetGetTimePage() : HttpPage(service, "index.html")
 23 {
 24 }

The SetGetTimePage constructor calls the HttpPage constructor. The first argument is a
pointer to the service function declared on line 14 and the second argument is the name of the
page. The page name and the function pointer to the service function are used by the virtual
file system when locating and calling the page service function.

The service function:

The web-resource service callback function is called by the web-server (via the virtual file
system) when the web-server delegates either a GET or a POST request to an instance of the
SetGetTimePage class. Recall that we registered the service callback function when we called
the HttpPage Constructor (line 22).

 26 void
 27 SetGetTimePage::service(HttpPage* o,
 28 HttpRequest* request,
 29 HttpResponse* response)
 30 {
 31
 32 response->write("<html><head>"
 33 "<title>Set or get SMX time</title>"
 34 "</head><body>");
 35
 36 if(request->getMethodType() == HttpRequest_Post)
 37 ((SetGetTimePage*)o)->doPost(request,response);
 38 else
 39 ((SetGetTimePage*)o)->doGet(response);
 40
 41 response->write("</body></html>");
 42 }

The first argument is the "this" pointer, but we have to typecast the "this" object to the
derived class. Remember, the service function is a static C++ callback function, which is
compatible with a C callback function.

The second argument, the request object, contains all the information you can possibly get
from the client. This information is pre-processed and presented as sub-objects within the
request object. For example, a client sending data to the server using a POST command is
pre-parsed by the web-server and stored as objects in the request object.

The third argument, the response object, is used when sending the response message back to
the client. For example, line 32 uses the "write" member function to send the initial part of the
HTML text back to the client, and line 41 sends the closing HTML page tags to the client.

Line 36 detects if this is a POST request or a GET request. Recall that GET is used to fetch a
new page and POST is used to send data from the client to the server. As you can see, we
have made one function to handle the GET request and one function to handle the POST
request. This is not necessary, but it sometimes gives a cleaner design.

Dynamically create the web-interface

The doGet function is called when the user types in the device URL in the browser or press the
refresh button.

The doGet function does the following:

1. Gets the current time from SMX.
2. Formats the time into a human readable string.

3. Sends the string to the client.

4. Sends the HTML form to the client.

The GET request function:

 45 void
 46 SetGetTimePage::doGet(HttpResponse* response)
 47 {
 48 static const char* wd[7] = {
 49 "Sun","Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
 50 };
 51 static const char* months[12] = {
 52 "Jan","Feb", "Mar", "Apr", "May", "Jun",
 53 "Jul","Aug", "Sep", "Oct", "Nov", "Dec"
 54 };
 55 struct tm tm;
1

 56 dword time = get_stime();
 57 httpTime2tm(&tm, time);
 58 response->write("<p>Current day and time is: ");
2 and 3

 59 response->printf("%s, %02d %s %d %02d:%02d:%02d GMT",
 60 wd[tm.tm_wday],
 61 tm.tm_mday,
 62 months[tm.tm_mon],
 63 tm.tm_year+1900,
 64 tm.tm_hour,
 65 tm.tm_min,
 66 tm.tm_sec);
 67 response->write("</p>");
4

 68 response->write(
 69 "<p>"
 70 "<form method='post'>"
 71 "<input type='text' name='time' size='30'/>"
 72 "
"
 73 "<input type='submit'/>"
 74 "</form>"
 75 "</p>");
 76
 77 }

• Line 56 uses the SMX time function to get the current time. This is in the number of
seconds since January 1, 1970. The web-server implements and uses a number of
time conversion functions. These functions are also available for you to use. Line 57
converts the time in seconds to a tm structure. This structure is documented in time.h.

• Line 59 formats the tm structure into a human readable string and sends the string to
the client. The printf member function works just like the regular printf, except for that
the output is sent to the client. The printf function is specially designed for embedded
devices and uses very little stack.

• Line 70 to 75 emits the HTML form to the client. This form will be used by the user
when changing the time in the server.

Setting a new time in the device

The doPost function is called when the user press the "submit" button.

The doGet function does the following:

1. Extracts the form data (the date and time string sent from the client to the server).
2. Converts the date and time string to number of seconds since January 1, 1970.
3. Converts number of seconds to a tm structure.
4. Sets the new time in the device.
5. Sends a command to the client that makes the browser do an automatic GET request.

The POST request function:

 80 void
 81 SetGetTimePage::doPost(HttpRequest* request, HttpResponse* response)
 82 {
 83 HttpTime time;
 84 struct tm tm;
1

 85 const char* timeStr = request->getParameter("time");
2

 86 if(timeStr == NULL || (time=httpParseDate(timeStr)) == 0)
 87 {
 88 response->printf(
 89 "<p>"
 90 "Cannot parse date and time string. "
 91 "Date string must be in RFC1123 or RFC850 format.
"
 92 "Try again"
 93 "</p>",
 94 getName());
 95 }
 96 else
 97 {
3

 98 httpTime2tm(&tm, time);
4

 99 setRTC(&tm);
5

 100 response->sendRedirect(response->encodeRedirectURL(getName()));
 101 }
 102 }

• Line 85 extracts the time field from the form data sent from the client. The string
"time" matches the form input field name on line 71 (name='time'). Barracuda makes
it extremely easy to work with complex form data sent from a client to the server. This
is just one of many functions you can use for retrieving data sent from the client to
the server.

• Line 86 checks if the form data should for any reason be empty and if the Barracuda
httpParseDate function could successfully convert the string to time in seconds since

January 1970. The httpParseDate function is a complex parser function implemented
and used internally by the web-server, but most of these functions are also available
to user code.

• Line 88 to 94 sends a response message to the client if the date and time could not be
parsed.

• Line 98 uses a Barracuda function and converts the time in seconds to a tm structure.
• Line 99 calls the function that sets the system time.
• Line 100 tells the client to redirect the request to the given URL. The sendRedirect

function can only take an absolute URL, such as
http://mydomain/myPath/myPage.html. The encodeRedirectURL converts the relative
path to an absolute URL and the getName function returns the name of the page. The
getName is a member function in HttpPage and SetGetTimePage inherits from

HttpPage.

You may have noticed that the sendRedirect function, which only sends a HTTP
header and no body text, is called after we had already started sending data to the
client. For example, we sent the beginning of the HTML body on line 32. This works
because the web-server does not immediately send data to the client. The data is
buffered internally in the response object and flushed to the client when the buffer is
full. Calling the sendRedirect member function discards any data in this buffer and
immediately sends the redirect HTML header to the client. The sendRedirect member

function also disables the response write functions. For example, the write on line 41 will have
no effect after calling the sendRedirect member function. At this point, you might not
understand the enormous amount of aid provided by the Barracuda web-server, but you will
come to appreciate these features when you design complex user interfaces for device control.
In the end, you will not understand how you could ever survive without Barracuda.

You might wonder why we send a HTTP redirect response header to the client instead of
sending a response body in the POST request. There are two reasons for this:

1. We already have the logic for sending the web-interface HTML code to the client when
the client sends a GET request.

2. A browser might stay in "POST mode" unless the browser is specifically doing a GET
after the HTTP POST response. This means that pressing the "refresh" button in the
browser would have sent another POST request to the server. The redirect response
makes the browser do a GET after the POST request. This is transparent to the user.

You can get the full source code for the set/get time code here.

Conclusion

We have shown you how to implement a resource by sub-classing the HttpPage class. A
HttpPage resource can do all kinds of sophisticated device control. The Barracuda framework,
which models the framework in J2EE makes it extremely easy to design web-interfaces for
controlling your device.

A HttpPage is similar in functionality to a Java-servlet, except for that a HttpPage is written in
C or C++. This gives you an enormous advantage since a good Java-servlet book, with its
interface resembling the Barracuda interface, can help you leverage the true power of the
Barracuda framework.

We also mentioned that one could overload the functionality in an HttpDir (the virtual file
system directory node). Barracuda comes with many classes that sub-class the HttpDir class.
These plugins make it possible for the Barracuda web-server to read HTML pages from a
regular file system, view a ZIP file as a read only file system, implement authentication and
authorization, etc..

http://java.sun.com/j2ee/
http://java.sun.com/products/servlet/

Writing a web-page class such as the SetGetTimePage in this article is normally not necessary
as the Barracuda web-server comes with a number of development tools that can automate
this task. One of these tools is a compiler than can take an HTML file and automatically
convert the HTML file to either a C or C++ web-page class. This HTML file can use special
server side tags, which we call CSP tags. The CSP tag language, which means C Server Pages,
is similar in functionality to ASP. The ASP tag language invented by Microsoft makes it possible
to insert Visual Basic within special server side HTML tags in an HTML file. Our CSP tag
language makes it possible to insert C or C++ within the same server side tags. Here is an
example of the above code designed in CSP.

The host tools that comes with Barracuda can help you convert an entire web-site with sub-
directories, gif images, etc. into a virtual file system, thus you do not have to manually create
the virtual directory structures as we did in this example.

Please see our CSP tag language white paper for more information on how to design and do
rapid development of advanced device control logic using the CSP compiler.

The CSP Hangman game
This article will show you how to use the server side tag language integrated into the
Barracuda Embedded Web-Server. It is suggested that you read the introduction to Barracuda
prior to reading this article.

Server side scripting, a method used in web-servers to dynamically create HTML, is typically
used in embedded devices as a way to dynamically create a user interface. The dynamic HTML
rendered in the server may, for example, show the dynamic changes in a power meter in a
device.

Barracuda supports a very advanced type of server side scripting, which we call CSP. CSP is
similar to Active Server Pages, ASP, which was invented by Microsoft. With CSP, you can
embed C or C++ directly into an HTML template page created by an HTML designer.

This article assumes that you are a C or C++ programmer with some HTML knowledge and
some experience in server side scripting. An introduction to server side scripting is outside the
scope of this article, but since Barracuda is similar to ASP, one can refer to an ASP book. The
ASP tag language is similar to CSP and the ASP API is similar to the API provided by
Barracuda, except for that Barracuda is using C or C++ for server side scripting.

A good introduction to ASP can be found online: http://www.w3schools.com/asp/

We will demonstrate how one can design the classic hangman game using CSP. The objective
of the game is to guess the word before the man is hung.

The hangman game is integrated into our Barracuda standalone windows demo (11MB). The
demo is a self-extracting archive. It automatically starts when the files are extracted. Audio
commentary begins immediately, so turn on your speaker before running.

http://www.w3schools.com/asp/asp_syntax.asp
http://www.realtimelogic.com/products/barracuda/demo/BarracudaDemo.exe

Start Example

The computer randomly selects a
word from its dictionary. The correct
number of blank spaces will appear
above the gallows. The gamer should
click on a letter of the alphabet to
guess that letter. If the gamer is
correct, that letter will appear. If the
gamer is incorrect, more of the
gallows will be drawn.

The hangman game is one CSP page,
which is installed into the virtual file
system at system startup. The web-
browser will send an initial HTTP GET
request to the server the first time the
gamer requests the page. The server
will forward the request to the
compiled CSP page, which is now part
of the virtual file system. Subsequent
requests from the browser will be
HTTP POST requests, which transmit
data from the browser to the server.

The compiled CSP page renders a new
HTML page and sends the page back
to the browser for every request. The
generated HTML file will therefore look
different for every request. It is the C
code embedded into the CSP page,
which generates the dynamic part.

A CSP page is an ordinary HTML file with added C or C++ code for rendering the dynamic
parts of the page. The C or C++ code is surrounded by, for example, the delimiters <% and
%>. The tags are similar to the ASP tags, but there is a difference between ASP and CSP. ASP
is compiled inside the web-server, but CSP is pre-compiled into C or C++ code on a host
computer. This code is then compiled with a C/C++ compiler and linked with your embedded
system.

Designing the hangman framework

The first part of the design is to identify the static components of the game. The static
components are the parts that will always look identical. This is typically done by an HTML
designer. We have deliberately made a very basic HTML framework. A real-world application,
which is designed by an HTML designer, would usually have a more appealing and professional
looking user interface.

http://embeddedwebserver.net/hangman.html

You can open the complete hangman game source code in a separate window and use the
source code as a reference when we discuss various code snippets from the game.

The HTML framework designed by the HTML designer:

<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Draft//EN'>
<html>
 <head><title> hangman </title></head>
 <body bgcolor='white' text='#000010' link='blue' vlink='#ff00ff'
link='#ffff00'>

 <div align=center>
 H
 a
 n
 g
 m
 a
 n
 </div>

 <div align=center>

<!-- Letters of the correct word and blank spaces here -->

 </div>

 <div align=center>
<!-- one of the 8 gallows images here -->
<!-- more dynamic text here -->

<!-- The following form should only be emitted when playing a game -->
 <form method='post' action='hangman.html'>

<!-- The 3 value attributes below must be dynamically updated -->
 <input type='hidden' name='wordDbIndex' value=''/>
 <input type='hidden' name='guess' value=''/>
 <input type='hidden' name='noOfUsedGues' value=''/>

 <input type='submit' name='ch' value='A'/>
 <input type='submit' name='ch' value='B'/>
<!-Letter C to Y omitted, must be added -->
 <input type='submit' name='ch' value='Z'/>
 </form>

 <p>
 view html source code
 </p>
 </div>
 </body>
</html>

Designing the C code infrastructure

The HTML designer left a number of HTML comments in the above HTML page. It is now the C
programmer's job to replace these comments with C or C++ code enclosed within server side
tags.

Before the C programmer can start filling in the blank spaces (replace the comments) in the
CSP file, the infrastructure for the game must be designed. The C code for handling this logic
should normally be left outside of the CSP file, but we have included all the code into the CSP
page for the purpose of this article. Web-designers always talk about separating the
presentation and the logic and one should therefore limit the amount of CSP tags with C or
C++ code in the CSP file.

One problem with designing the hangman game is that we must have some mechanism that
can keep state information in between HTML page requests. HTTP is a stateless protocol and
can not help us in maintaining the state information. There are basically two methods for
maintaining state information between page requests.

• Persistent session object: Provides a way to identify a user across more than one page
request or visit to a Web-Server and to store information about that user.

• Hidden variables: Invisible HTML tags that stores information in between requests.

Barracuda supports persistent session objects, but the HTML designer, which designed the
above HTML template, assumed we wanted to use hidden variables. Hidden variables are
adequate for the hangman game, but the use of hidden variables can easily get ugly in more
advanced applications. This is when session object comes to the rescue and can be used when
a more advanced state architecture is required.

Game state information is stored in 3 hidden HTML variables:

<!-- The 3 value attributes below must be dynamically updated -->
 <input type='hidden' name='wordDbIndex' value=''/>
 <input type='hidden' name='guess' value=''/>
 <input type='hidden' name='noOfUsedGues' value=''/>

The HTML designer assumed we needed 3 hidden variables for storing state information. It is
the C programmer's responsibility to update these variables in between page requests. The
state variables stored in the HTML page maintains the game's internal state information for
the current gamer.

An interesting feature of this game is that it is possible to cheat by pressing the back button in
the browser. Say that you almost got hung, but you got some letters right, then all you have
to do is to press the back button until you do not see the gallows. You can now restart the
game and enter the letters you had right so far. This works because the state variables are
stored in the HTML page and the browser cached the old pages. By pressing the back button,
you are in fact rewinding the game.

Using a session object for storing the state information would have made it impossible for the
gamer to cheat as the state information would have been stored on the server. As you can
see, storing state information in hidden variables can lead to unwanted results and a possible
security breach in your system.

Writing the C code

We have designed this version of the hangman game in C++. Barracuda is a C library with
special C++ wrappers in the header files. The C interface is similar to the C++ interface.

The first we need is the dictionary:

 86 struct Word
 87 {
 88 const char* clue;
 89 const char* answer;
 90 };
 91
 92 const Word wordDB[] = {
 93 {"action", "drool"},
 94 {"action", "forecast"},
 95 {"action", "forget"}, ----- more code

This is declared within the <%g %>, the CSP Global tag is typically used for declaring static
data in the CSP file.

We can now start looking at what goes into the CSP page's service function. The service
function is automatically generated by the CSP compiler. You would not normally see this
function unless you look at the C or C++ code generated by the CSP compiler. The web-server
calls the service function when the browser requests the page. The C/C++ code in the
following CSP tags are executed within the service function: <%p %>, <%e %>, <% %> and
<%= %>.

The service function has the following prototype:

Hangman::service(HttpRequest* request, HttpResponse *response)

The request object contains all the information you can possibly get from the client. This
information is pre-processed and presented as sub-objects within the request object. For
example, a client sending data to the server using POST is pre-parsed by the web-server and
stored as objects in the request object.

The response object is used for sending the response message. For example, the CSP compiler
extracts all the static HTML data in a CSP file and automatically creates C code for sending the
data back to the client using the response object. The embedded C/C++ code within the CSP
tags can also use the response object for sending data to the client.

The following code snippet is from within the prolog CSP tag, the <%p > tag. C code within
the prolog tag is guaranteed to execute first within the page service function, no matter where
in the HTML file you insert the tag:

 252 unsigned int i;
 253 const char* ch=0;
 254 const Word* word=0;
 255 int wordDbIndex;
 256 const char* guess=0;
 257 char* newGuess=0;
 258 int noOfUsedGues = 0;
 259 HttpParameterIterator fIter(request);
 260 /* Extract data from form in the above html */
 261 for(; fIter.hasMoreElements() ; fIter.nextElement())
 262 {
 263 if(! strcmp(fIter.getName(), "guess"))
 264 guess = fIter.getValue();
 265 else if(! strcmp(fIter.getName(), "ch"))
 266 ch = fIter.getValue();
 267 else if(! strcmp(fIter.getName(), "wordDbIndex"))
 268 {
 269 wordDbIndex = atoi(fIter.getValue());
 270 word = &wordDB[wordDbIndex];
 271 }
 272 else if(! strcmp(fIter.getName(), "noOfUsedGues"))
 273 noOfUsedGues = atoi(fIter.getValue());
 274 }
 275 if(word) /* Should be true unless first time or a new game.
 276 * This works since the form in the html above is only
 277 * emitted if we are playing a game
 278 */
 279 {
 /* See hangman game for complete source code */
 296 }
 297 else /* First time or new game */
 298 {
 299 wordDbIndex = rand() % (sizeof(wordDB) / sizeof(wordDB[0]));
 300 word = &wordDB[wordDbIndex];
 /* See hangman game for complete source code */
 304 }

The above code declares a parameter iterator (line 259), which is used for fetching all of the
variables (including the hidden state variables) from the FORM declared in the CSP page. The
first request is a GET request and the parameter container will therefore be empty. When the
gamer press one of the A to Z letters, the browser will send a POST request and the FORM
variables will be retrieved from the parameter container, by using the above
HttpParameterIterator.

GET request (Line 298 - 304):

If it is a new game, a new word is randomly selected using "rand()". The current word offset
position in the database is later stored in the wordDbIndex hidden HTML variable. This will be
explained later.

POST request (Line 279 - 296):

If the gamer presses one of the buttons in the hangman game, the browser sends the FORM
data to the server. The loop (line 261 - 274), using the iterator, in the above code extracts the
current game's state variables and the A-Z button pressed.

Replacing the HTML comments with CSP tags

It is the C programmer's responsibility to add the dynamic HTML rendering to the HTML page.
The C programmer should replace all the comments in the above HTML file with CSP tags.

The first HTML comment in the HTML page is:

<!-- Letters of the correct word and blank spaces here -->

We replace the above comment with the following code:

 18 <%
 19 for(i = 0; i < strlen(newGuess) ; i++)
 20 response->printf("%c ", newGuess[i]);
 21 %>

The newGuess variable is a C array, which contains the letters guessed so far. The array is
initially filled with underscores and the underscores are replaced by the correct letters when
the gamer correctly guesses the letter.

The above loop simply loops trough all the letters in the array and print out the letters and
spaces in between. For example, the following may be emitted when a new game is started:

- - - - - - -

The response object is in charge of sending data back to the client. The CSP page
automatically emits the static part of the HTML page to the response object. The CSP tags are
inserted into the HTML such that we can inject the dynamic content into the page. The printf
member function in the response object works like the regular printf function, except for that
the data printed is not sent to some console, but to the client browser window.

The comment:

<!-- one of the 8 gallows images here -->

is replaced with:

 26 <img src='images/hang<%="%d" noOfUsedGues%>.gif'/>

We have a total of 8 gallows images. The above code emits HTML code for selecting one of the
8 images. The variable noOfUsedGues is a number between 0 and 7, thus the emitted HTML
will be if the variable noOfUsedGues is zero. The gamer has a
total of 6 possible failures before hung, thus the first 6 images (0-5) are images of an
appearing gallows. Image 6 is shown if the gamer failed and image 7 is shown if the gamer
won.

The next HTML comment is:

<!-- more dynamic text here -->

is replaced with:

 31 <p>
 32
 33 <%= noOfUsedGues == 6 ? "Game over." : "You Won!!!"%>
 34
 35 </p>
 36 <p>
 37
 38 The correct answer is <%=word->answer%>.
 39
 40 </p>
 41 Play another game of Hangman
 42 <%
 43 }
 44 else
 45 {
 46 if(noOfUsedGues == 0)
 47 {
 48 %>

The first condition above is to test for noOfUsedGues = 6 or 7, which means that the game is
over. The user won if it is 7 and failed if the variable is 6. A game is still in progress if the
variable is between 0 and 5. Please refer to the hangman.html source code for the complete
code.

The above CSP code snippets shows how one can make static HTML code conditional by
enclosing the HTML code within CSP tags. For example:

<%
 if(someCondition)
 {
%>
 <p>
 The condition is true.
 </p>
<%
 }
 else
 {
%>
 <p>
 The condition is false.
 </p>
<%
 }
%>

The HTML in the first section will be emitted if the someCondition variable is true, and the
second HTML section will be emitted if the someCondition variable is false.

Creating the form and maintaining the state variables

 61 <form method='post' action='hangman.html'>
 62 <input type='hidden' name='wordDbIndex' value='<%="%d"
wordDbIndex%>'/>
 63 <input type='hidden' name='guess' value='<%=newGuess%>'/>
 64 <input type='hidden' name='noOfUsedGues' value='<%="%d"
noOfUsedGues%>'/>
 65 <% for(i = 'A'; i <= 'Z'; i++)
 66 response->printf("\t\t<input type='submit' name='ch'
value='%c'/>\n",i);
 67 %>
 68 </form>

The first 3 hidden variables in the form are dynamically created by the CSP page every time
the gamer fetches a new HTML page from the server. This is how we maintain the game's
state information. We showed you how to extract the FORM data from a POST request in the
above C++ code snipped (line 261 - 271), by using a HttpParameterIterator.

The next part of the form emits the A to Z buttons. The HTML framework designed by the
HTML designer had 26 static input tag fields for the A to Z buttons. The C programmer realized
that there is no need to have 26 static input fields when one can dynamically create the 26
fields from a simple loop. This makes the CSP page smaller and thus, one uses less memory.

How it works

A CSP page is converted into C or C++ code by using our CSP compiler. Our CSP compiler is
known as CspCompile. The C or C++ code generated by the CspCompiler is compiled into
object code using a C/C++ compiler and linked into your application. All of the C/C++ code
enclosed within the CSP tags will go into the page service function, which is automatically
generated by the CSP compiler.

The C/C++ code produced by the CSP compiler inherits from the HttpPage type. An instance
of an HttpPage can be inserted into the virtual file system and will be called by the web-server
when a user requests the page. A HttpPage is very similar in functionality to a Java Servlet.

It is also possible to write your own version of an HttpPage and insert the page into the virtual
file system. It is sometimes better to write an HttpPage directly instead of using the CSP
compiler if the page contains very little presentation but a lot of logic.

If you look at the C++ code generated by the CSP compiler for the Hangman game, you will
see that all the C++ code we added to the CSP page is now part of the generated code. You
will see the beginning of the service function if you go to line 184. You will also see a "C #line
pre-processor directive" a few lines down. The CSP compiler emits line directives into the
generated code such that a C compiler can show the correct line number in the HTML file. This
means that the C compiler will show you the line of the error in the HTML file if you should
make a typo in the embedded C code. Most C compiler supports the #line directive and will
show you the CSP page and not the auto-generated C++ code. This is also the case when
debugging the code with a debugger.

You will see the following code if you go to line 243:

if(httpWriteSection(this->data,response,this->blocks[0].offset,this-
>blocks[0].size))
 goto L_epilogue;

The code emits one of the static HTML sections we had in the CSP page. The actual data is not
embedded into the code, but kept separately in another file. Barracuda is very flexible in the
way it handles HTML sections in the CSP pages.

One can have the web-server read the sections from:

• A file system.
• Directly from Flash memory.
• One can convert the data file to a large C array, which can then be compiled and

linked with the application.

If the "httpWriteSection" function returns a negative number, the processor will jump to the
epilogue code. We do not use C++ exceptions since most embedded systems do not use
them. Instead we use the "goto L_epilogue;", which is to where the <%e >, the code enclosed
within the CSP epilogue tag is inserted.

http://java.sun.com/products/servlet/

Conclusion

We have now shown you how easy it is to use the CSP tag language for making advanced
dynamic HTML on the server side. We have barely scratched the surface of the endless
possibilities of the powerful CSP language. Barracuda also provides a massive C and C++ API
for working with server side scripting.

Exercise

We discussed the danger of maintaining state information inside the HTML page and that it is
better to use a persistent session object for maintaining the state information.

If you have the Barracuda development environment, a good exercise would be to rewrite the
game to use a persistent session object for storing the state information.

The CSP page contains many CSP tags and can be hard to read. A better design is to break
the CSP page into several pages such that it is easier to read. The pages can be combined at
runtime using Httpresponse::include.

Introduction to web-security and
the Barracuda Virtual File System

A device that is constantly connected to the internet needs to be protected from being used by
unauthorized users. Internet security can be divided into the following categories.

• Authenticating users.
• Authorizing an authenticated user.
• Preventing eavesdropping and modification of data.

The web-infrastructure has well defined API's for all of the above security mechanisms. The
Barracuda Web-Server implements and makes it very easy setup a protection mechanism for
your embedded device. All browsers today implement the above security types. Thus, by
piggybacking on the well defined web-security mechanisms, your device can be configured
with advanced security control in no time.

It is needless to say that the above security mechanism would be very hard and time
consuming to implement if you use a proprietary protocol for controlling your device.

It is suggested to read the device control and the CSP tag language white papers before you
continue reading this white paper.

We have a small demo program, which implements a secure photo album. We
suggest that you download and try this demo program. The demo program is a
Windows NT/XP executable.

Preventing eavesdropping and modification of data

Eavesdropping and modification of data is prevented by using a Secure Socket Connection
(SSL). SSL is the recommended method for protecting sensitive information.

Creating a secure socket listener object is similar to how we created an insecure socket
listener object in the device control white paper.

A detailed explanation of how to use and initialize the SSL engine is outside the scope of this
article. Please see our partner's SSL white paper for more information.

Authenticating users

The HTTP protocol has support for two authentication mechanisms, Basic Authentication and
Digest Authentication. The Barracuda Web-Server has support for Basic and Digest
Authentication. The Web-Server also supports form based login.

• Basic Authentication - a method, supported by HTTP 1.1, for requiring a username and
password to be supplied for protected resources. If the authentication fails, the server
returns HTTP status code 401 (Unauthorized). Basic authentication transmits
username and password as plain text making it insecure, unless protected by SSL.

• Digest Authentication - a method, supported by HTTP 1.1, which is similar to Basic
Authentication, but where password data is encrypted for transmission using a hashing
algorithm. This method is far from as secure as SSL and is for this reason considered
"poor man's encryption".

• Form Authentication - the login process is performed by a custom web-page, allowing
us to customize its appearance and the nature of error messages. More importantly, it
allows us to apply more secure authentication methods. In order to be secure, form
authentication should be used in conjunction with SSL.

Basic and Digest Authentication sends a HTTP challenge command to the browser. The
browser will then open a pop-up window, where the user can enter a user name and a
password.

A weakness in the Basic
and Digest Authentication
mechanism is that the
server cannot customize
the login pop-up window,
thus both Basic and Digest
Authentication is
considered to be less user-
friendly. It is today more
common to use FORM
based login in conjunction
with SSL and this is also
our recommended login
method.

Basic, Digest and Form based logins in the Barracuda Web-Server are implemented by using a
persistent session object. Many other embedded web-servers do not have persistent session
handling, thus they do not give you FORM based login as an option since FORM based login
requires persistent session handling.

Authorizing users

One must have an understanding of principals and roles for understanding how the
authorization mechanism works. A principal basically identifies an entity that can interact or
perform work in a system. It can be a person, company - just about anything in fact.

A role groups certain actions together, and we can then specify certain principals having
particular roles, thus giving those principals clearance to perform the action.

This is similar to a concept of users and groups in a UNIX system, where users are generally
people that may access the system, and groups represent the position that users can hold. For
example, a company system may have a user called Allen Smith, who belongs to the group,
human resources.

Thus an authenticated user might not have clearance to perform certain actions. The
authentication and/or authorization process may be seen as:

Authentication and authorization is performed on a directory level in the web-server. A user
might first be asked to login when descending into a directory branch. When the user has
successfully been authenticated, the user's principal is checked with the directory node's role.
If the user is part of the role, the user is allowed to access the directory. A directory hierarchy
can be setup to be more restrictive as the user is descending into the sub-directories thus the
user might be denied access further down the directory hierarchy.

We must first explain how the virtual file system works before we can further discuss how to
use the security mechanism in the web-server.

The virtual file system

We briefly mentioned the virtual file system in the device control white paper, where we
explained that HttpDir is the directory node and HttpPage is the page node. An instance of the
HttpDir class can contain sub-directories and/or pages and this is how the directory hierarchy
in Barracuda works.

One of the unique features of the HttpDir class is that its functionality can be overloaded, thus
by inheriting from the HttpDir class, one can implement unique features for each directory
node. Barracuda comes with a number of pre-defined classes that inherit from the HttpDir
class.

Two very useful classes, which inherit from HttpDir are:

• DiskDir is the interface to a regular file system. A DiskDir node extends the URL search
path into searching a file system for the requested file.

• ZipDir turns a ZIP archive into a compressed read-only file system.

Now let us assume that the Smith family wants to setup a web-server with a family picture
album and with a number of archived documents. The archived documents will not be
changed, so the Smith family decides to zip the archived documents into a zip file. New
pictures might be added to the album when available so a zip file is not a good solution. The
Smith family decides to use a DiskDir for reading the photo album.

The Barracuda virtual file system is set up with a root directory node. The root directory is
setup with one instance of the DiskDir class and one instance of the ZipDir class.

A browser requesting documents from the server will see the various HttpDir nodes in the
virtual file system as a coherent directory tree. From the clients perspective, the virtual file
system can bee seen as the following:

For example, an URL such as http://Smith.com/pictures/p1.jpg makes the DiskDir object
search its root path for p1.jpg. The root path is setup when the DiskDir object is created. It
could be, for example, "c:\Documents and Settings\users\My Documents\"My Pictures" if run
on a Windows machine.

For the above directory structure, a security manager is constructed such that only family
members can access the "ArchivedDoc" and the "private" directory. The "picture" directory is
for public access. The security manager is also setup such that only James is allowed to access
the "James" directory and James mother and father are the only ones that can access the
"MomAndDad" directory. We will discuss how to install a security manager later.

A virtual directory structure can consist of many HttpDir instances and of specialized types
that sub-class and overload the functionality in the HttpDir class.

A virtual directory structure can be created manually as we did in the device control white-
paper or be automatically created by the powerful host tools that come with the Barracuda
Web-Server.

We used the CSP compiler in the CSP tag language white-paper for compiling the hangman
game. What we did not explain is that the data file produced by the CSP compiler contains
information about the relative path to the page. You can think of this data file as an object file.
The CSP linker links all these data files together, calculates the internal offset positions and
produces two files.

• A data file - which contains all of the page object's presentation (HTML) data.
• A C file - you compile and link with your system. This code automatically creates the

virtual files system when the web-server starts.

The possibilities with the virtual file system are almost endless. In this article, we have limited
ourselves to covering only the basics.

The Barracuda security manager

The Barracuda security manager is a collection of a number of classes. It should be no
surprise that the security functionality is installed in the virtual file system and that a
specialized version of the HttpDir type overloads the base functionality by adding
authentication and authorization to the directory node. The sub-classed HttpDir class is called
AuthenticateDir. The AuthenticateDir class is just a few lines of code. All of the security related
logic is kept in a number of classes that is referenced by AuthenticateDir. A detailed
explanation of the security classes can be found here.

The AuthenticateDir service function:

 1 static int AuthenticateDir_service(AuthenticateDir* o,
 2 const char* relPath,
 3 HttpResponse* response)
 4 {
 5
 6 if(AuthenticatorInterface_authenticate(
 7 o->authenticator,o->roles,response))
 8 {
 9 /*Authenticated. Call the directory service function.*/
 10 return (*o->orgService)((HttpDir*)o, relPath, response);
 11 }
 12 else
 13 {
 14 /* User is not authenticated.
 15 * Return "file found" such that the virtual file system
 16 * does not look for duplicate directories.
 17 */
 18 return 0; /* 0 = found i.e. no error.*/
 19 }
 20 }

• The directory service function is activated by the web-server or the top directory when
the browser sends a request. The relPath argument (line 2) is the relative path for the
current directory node. The relative path comes from the requested URL.

• Line 6 is where we delegate the authentication and/or authorization to the
authentication/authorization logic. The function returns true if the user is
authenticated and authorized.

• Line 10 is where we delegate the request to the original service function (the
overloaded service function). Recall that Barracuda is a C library and that we cannot
use virtual functions. We must instead use function pointers. What we do is to call the
original HttpDir service function, which delegates the request to the correct HttpPage
object.

The AuthenticateDir class can easily be extended to perform customized security checks. For
example, one could bypass the security manager if the request is from the local network or
prevent certain domains from even accessing the directory.

One could also create a simple filter that denies the request if the request is not using a
secure channel (SSL). The service function could either send back a response message that
the client must use a secure channel, or the service function could automatically redirect the
client to a secure channel.

Conclusion

Web-security is a complex and important topic. This article has given you an introduction to
the Barracuda security mechanism and the virtual file system. The Barracuda security
mechanism models the security mechanism in J2EE, though in a simplified form. Many good
books can be found that cover web-security and especially the J2EE security mechanisms. We
also discussed the benefit of using a custom FORM login instead of using Basic or Digest HTTP
authentication. Our Barracuda standalone Windows demo has an example of a customized
FORM login, which clearly demonstrates the user friendliness of a customized login. You see
the custom FORM login example when you press the "Barracuda Documentation" link in the
standalone Windows demo.

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Security.html

A Trace Tool
Using the EventHandler

Most embedded development tools come with some sort of debugging aid. For example, an
integrated environment such as the Metrowerks IDE can be used for setting breakpoints and
stepping through the source code in an embedded device. Many of these debuggers run in so
called freeze mode, thus effectively stopping all tasks when a breakpoint is hit. It is for this
reason common to instrument the code with printf's such that one can debug or trace the code
without halting the target.

Using printf in an embedded device is sometimes a challenge as not all devices have a
console.

It is very easy to create a trace library using the Barracuda Web-Server and the Barracuda
EventHandler plug-in. A browser window will be used as the console. By connecting a browser
to the server and using the persistent connection feature of the EventHandler, the trace data
can be sent in real-time from the server to the browser window.

The following print functions will be created.

void bprintf(int prio, const char* fmt, ...);
void bvprintf(int prio, const char* fmt, va_list argList);
void bflush(void);

The functions bprintf and bvprintf works just like the ANSI C printf and vprintf functions,
except for the first argument, which is the message priority. The trailing 'b' in the function
names is short for browser window -- i.e., the message is sent to a browser window and not
the standard console. Data is not immediately sent to the client, but is buffered in the server
code. Function bflush flushes whatever data that is in the buffer to the client.

Designing Rich Client User Interfaces

The client side of the simple debugger cannot be constructed using static HTML. A client side
application using the EventHandler must be implemented in JavaScript (ECMAScript). A client
application that can dynamically change the GUI can be referred to as Dynamic HTML or just
DHTML.

A simple template for such an application is shown below.

 <html>
 <head>
 <script>
 onload=function() {
 };
 </script>
 </head>
 <body>
 </body>
 </html>

http://www.crockford.com/javascript/javascript.html
http://www.w3schools.com/dhtml/default.asp

As you can see, the HTML body tag contains no HTML elements. Elements will be added and
removed to the browser's DOM by using JavaScript code. The script tag contains one event
function declaration in the above example. The onload event is automatically triggered by the
browser when all components of a HTML page is loaded. We will later use this function for
starting up and connecting the EventHandler to the server.

A DHTML client using the EventHandler is loaded and initialized as follows:

1. The user requests the page from the server by typing in the URL to the DHTML client
interface.

2. The browser sends a GET request to the server.
3. The server responds by sending the DHTML page to the client.
4. The browser parses the DHTML page.
5. The browser loads images and external referenced JavaScript code by sending GET

requests to the server.
6. The browser calls the onload function when all external referenced files are loaded.
7. The onload function initializes the EventHandler and sets up a persistent connection to

the server.

Writing and testing the initial code without using Barracuda.

As you saw in the above DHTML template, the HTML body contained no HTML elements. Most
graphical user interfaces contain parts that never change and our simple debugger is no
different. We will add some HTML code to the body of the document and add most of the
JavaScript code for the client.

The client can at this point be developed without using the Barracuda Web-Server since the
client interface does not require server side scripting. A simple text editor and a browser is all
that is needed for doing nearly all of the client side development.

Development of the user interface is ideally left to a DHTML programmer. A DHTML
programmer can develop and test the GUI code offsite. At this point in the development, the
server interface can be simulated. When the GUI development is completed, the stub code can
be replaced by the interface functions defined in the EventHandler Interface Definition File.

We have added some stub functions (test code) to the Simple Debugger such that we can test
some of the functionality without the server. Please open the Simple Debugger Test Code.

The Simple Debugger Test Code prints out "Contacting server....", but the test code will not
contact the server since we have not added the EventHandler code to the DHTML test code at
this stage.

The EraseTrace button is the only code completed so far. The button simply erases all data in
the client.

The Enable/Disable Trace button will eventually send an "enable/disable trace command" to
the server. The Enable/Disable Trace button currently prints out some text in the console. This
is used to test how text sent from the server is formatted in the console window.

The Trace Level combo box lets the user select the trace priority. A total of 10 priority levels
can be set. Level 0 is the highest priority and if selected, only trace messages with priority
level 0 are sent to the console.

You should now study the source code for the Simple Debugger. Right click in the Simple
Debugger browser window and select "view source".

Do you have a difficulty understanding how the client side code works? Now is a good time to
read up on the following technologies:

• HTML.
• Cascading Style Sheets.
• JavaScript.
• Using JavaScript and the Document Object Model.

The online and free w3schools.com is an excellent resource for all of the above technologies.

Creating the interface definition file (IDL)

The next step is designing the interface definition file. Barracuda comes with an IDL compiler
that can translate the IDL definition into JavaScript code and C/C++ code.

SimpleDbg.ehi:

client SimpleDbgServer2ClientIntf
{
 asynchAddText { string text; }
 asynchOnInitSetStatus { int traceButtonState; int tracePriorityLevel; }

server SimpleDbgClient2ServerIntf
{
 setTraceButtonState { int state; }
 setTraceLevel { int priority; }
}

As you saw from the Simple Debugger Test Code, we have already constructed the code for
the server to client interface. The EventHandler stub compiler otherwise generates the
skeleton for these files.

The EventHandler stub compiler also generates some C header files and C source files. You
can either generate C code or C++ code. We have used C code for this example.

Adding the client side EventHandler code

The client side EventHandler code, which is in a separate JavaScript file, must be loaded into
the DHTML client. The following two declarations are added to the header section.

 <script src="/eh/jseh.js"></script>
 <script src="/autogen/SimpleDbgClient2ServerIntf.js"></script>

The first line loads the EventHandler stack and the second line loads the JavaScript stubs that
were generated by the EventHandler stub compiler when we compiled the SimpleDbg.ehi
interface definition file.

http://www.w3schools.com/

The EventHandler and the server stub interface are created in the onload function:

var eh = new EventHandler("/SimpleDebugger.interface");
var serverIntf = new SimpleDbgClient2ServerIntf(eh);

The first line creates an instance of the EventHandler stack. The argument is the URL to the
server side of the SimpleDbgServer2ClientIntf, which we declared in the SimpleDbg.ehi
interface definition file.

The next step is to add code for sending commands to the server from the local event
functions. For example, the clientToggleTrace event function in the Simple Debugger Test
Code can disable the trace by calling the following function:

serverIntf.setTraceButtonState(0);

Re-enable the trace is:

serverIntf.setTraceButtonState(1);

ANSI C and object-oriented programming

Barracuda, which is an object oriented C library, provides a C code API and a C++ code API.
In this white paper, we have used the C interface.

We suggest that you read the introduction to Object Oriented programming in C code before
you continue reading this white paper.

Downloading the example code

It is now time to download the example code. The example code contains all source code for
the Simple Debugger and a pre-compiled executable server for MS Windows. The server starts
automatically when you run the example code's self extracting ZIP file.

The source code you should study is:

html\SimpleDebugger.html The DHTML client.

src\SimpleDebugger.c The server Simple Debugger implementation.

http://www.realtimelogic.com/products/barracuda/demo/_EHWP/downloadDemo.html

The server side implementation of the Simple Debugger

The Simple Debugger implementation is designed such that only one client can be connected
to the server. You can test this by opening a separate browser window and type in the URL to
the SimpleDebugger. The server is a shared resource, and one must have this in mind when
designing a client server application. It would be easy to change the Simple Debugger to be
multi user enabled, but the purpose with this demo is to show you how a user can exclusively
lock the server application.

Typically, a multi user enabled application should automatically synchronize all connected
DHTML clients. For example, if one user changes the trace level in the combo box, then all
connected clients should be updated. The way this works is that the client changing the trace
value sends a change command to the server. The server responds by sending an
asynchronous change user interface command to all connected clients.

You can download the Barracuda demo if you would like to see examples of multi user enabled
applications. The Barracuda demo contains a multi user enabled slide show and a multi user
enabled MP3 player.

The server side implementation of the Simple Debugger is in src\ SimpleDebugger.c.

The SimpleDebugger source code is heavily commented, but in short:

The core server functionality is encapsulated in class SimpleDebugger.
The SimpleDebugger contains the following member functions:

newClientCon called when a new client initiates a persistent connection.

clientConTerminated called when a client terminates a persistent connection.

setTraceButtonState called when the user presses the Enable/Disable Trace Button.

setTraceLevel
called when the user selects a new priority value in the Trace Level
combo box.

send2Browser Sends data to client when trace buffer is full.

vprintf
Works like the ANSI C vprintf function, except for that the data is sent
to a browser window via function send2Browser.

flush Send data in trace buffer to client.

constructor Initializes all data for this class.

http://www.realtimelogic.com/products/barracuda/demo/BarracudaDemo.exe

Conclusion

JavaScript code can manipulate the DOM in the browser window, thus creating rich user
interfaces. One can either use the DOM directly as we did in the Simple Debugger or use a
widget library such as Bindows.

Another possibility is to use SVG. Scalable Vector Graphics (SVG) is an exciting new XML-
based language for Web graphics from the World Wide Web Consortium (W3C). One can
create advanced interactive graphical user interfaces using SVG. The Barracuda demo contains
an example of a rich client interface implemented in SVG.

One can easily design browser based rich client interfaces that can offload the processing
required in the embedded systems. Embedded systems are normally resource constrained and
offloading the processing to a client can ease the burden on the embedded device. Most host
computers today are very powerful and can easily execute large JavaScript applications.

JavaScript is a very interesting language and although it looks similar to C code at first glance,
you will soon discover the power of this amazing language. A JavaScript application can be
compressed and stored in the server. The client loads the compressed image, deflates the
code and starts executing the application.

JavaScript is normally limited to the environment exposed by the browser's JavaScript engine,
but our EventHandler extends the functionality of this language. One can easily design
complex distributed applications using the EventHandler.

http://www.bindows.net/
http://www.adobe.com/svg/
http://www.w3.org/TR/SVG/
http://www.realtimelogic.com/products/barracuda/demo/BarracudaDemo.exe

	Introduction to the Barracuda Embedded Web-Server
	Introduction to HTTP
	Using a Web Server in an embedded device
	Using a Web Server for regression tests
	Using a browser to control an embedded device
	Introduction to CSP
	Creating dynamic user interfaces using CSP.
	Sending data from a browser to the server
	"Hacking" a Web Server using telnet
	Rich Client Interface
	The EventHandler
	Conclusion
	References
	Device control with Barracuda
	Use Barracuda to remotely set and get the system time
	Assembling the web-server
	The Barracuda SMX task
	Creating the set/get time page class
	Dynamically create the web-interface
	Setting a new time in the device
	Conclusion

	The CSP Hangman game
	Designing the hangman framework
	Designing the C code infrastructure
	Writing the C code
	Replacing the HTML comments with CSP tags
	Creating the form and maintaining the state variables
	How it works
	Conclusion
	Exercise

	Introduction to web-security and�the Barracuda Virtual File
	Preventing eavesdropping and modification of data
	Authenticating users
	Authorizing users
	The virtual file system
	The Barracuda security manager
	Conclusion

	A Trace Tool�Using the EventHandler
	Designing Rich Client User Interfaces
	Writing and testing the initial code without using Barracuda
	Creating the interface definition file (IDL)
	Adding the client side EventHandler code
	ANSI C and object-oriented programming
	Downloading the example code
	The server side implementation of the Simple Debugger
	Conclusion

